NeuroN models of the geNeric bifurcatioN type: Network aNalysis aNd data modeliNg
نویسنده
چکیده
Minimal nonlinear dynamic neuron models of the generic bifurcation type may provide the middle way between the detailed models favored by experimentalists and the simplified threshold and rate model of computational neuroscientists. This thesis investigates to which extent generic bifurcation type models grasp the essential dynamical features that may turn out play a role in cooperative neural behavior. The thesis considers two neuron models, of increasing complexity, and one model of synaptic interactions. The FitzHugh-Nagumo model is a simple two-dimensional model capable only of spiking behavior, and the Hindmarsh-Rose model is a three-dimensional model capable of more complex dynamics such as bursting and chaos. The model for synaptic interactions is a memory-less nonlinear function, known as fast threshold modulation (FTM). By means of a combination of nonlinear system theory and bifurcation analysis the dynamical features of the two models are extracted. The most important feature of the FitzHugh-Nagumo model is its dynamic threshold: the spike threshold does not only depend on the absolute value, but also on the amplitude of changes in the membrane potential. Part of the very complex, intriguing bifurcation structure of the Hindmarsh-Rose model is revealed. By considering basic networks of FTM-coupled FitzHugh-Nagumo (spiking) or HindmarshRose (bursting) neurons, two main cooperative phenomena, synchronization and coincidence detections, are addressed. In both cases it is illustrated that pulse coupling in combination with the intrinsic dynamics of the models provides robustness. In large scale networks of FTM-coupled bursting neurons, the stability of complete synchrony is independent from the network topology and depends only on the number of inputs to each neuron. The analytical results are obtained under very restrictive and biologically implausible hypotheses, but simulations show that the theoretical predictions hold in more realistic cases as well. Finally, the realism of the models is put to a test by identification of their parameters from in vitro measurements. The identification problem is addressed by resorting to standard techniques combined with heuristics based on the results of the reported mathematical analysis and on a priori knowledge from neuroscience. The FitzHugh-Nagumo model is only able to model pyramidal neurons and even then performs worse than simple threshold models; it should be used only when the advantages of the more realistic threshold mechanism are prevalent. The Hindmarsh-Rose model can model much of the diversity of neocortical neurons; it can be used as a model in the study of heterogeneous networks and as a realistic model of a pyramidal neuron.
منابع مشابه
Evaluation of Ultimate Torsional Strength of Reinforcement Concrete Beams Using Finite Element Analysis and Artificial Neural Network
Due to lack of theory of elasticity, estimation of ultimate torsional strength of reinforcement concrete beams is a difficult task. Therefore, the finite element methods could be applied for determination of strength of concrete beams. Furthermore, for complicated, highly nonlinear and ambiguous status, artificial neural networks are appropriate tools for prediction of behavior of such states. ...
متن کاملEfficiency evaluation of wheat farming: a network data envelopment analysis approach
Traditional data envelopment analysis (DEA) models deal with measurement of relative efficiency of decision making units (DMUs) in which multiple-inputs consumed to produce multiple-outputs. One of the drawbacks of these models is neglecting internal processes of each system, which may have intermediate products and/or independent inputs and/or outputs. In this paper some methods which are usab...
متن کاملPrediction of the Effect of Polymer Membrane Composition in a Dry Air Humidification Process via Neural Network Modeling
Utilization of membrane humidifiers is one of the methods commonly used to humidify reactant gases in polymer electrolyte membrane fuel cells (PEMFC). In this study, polymeric porous membranes with different compositions were prepared to be used in a membrane humidifier module and were employed in a humidification test. Three different neural network models were developed to investigate several...
متن کاملSimulation study of Hemodynamic in Bifurcations for Cerebral Arteriovenous Malformation using Electrical Analogy
Background and Objective: Cerebral Arteriovenous Malformation (CAVM) hemodynamic is disease condition, results changes in the flow and pressure level in cerebral blood vessels. Measuring flow and pressure without catheter intervention along the vessel is big challenge due to vessel bifurcations/complex bifurcations in Arteriovenous Malformation patients. The vessel geometry in CAVM patients are...
متن کاملModeling environmental indicators for land leveling, using Artificial Neural Networks and Adaptive Neuron-Fuzzy Inference System
Land leveling is one of the most important steps in soil preparation and cultivation. Although land leveling with machines requires considerable amount of energy, it delivers a suitable surface slope with minimal soil deterioration as well as damage to plants and other organisms in the soil. Notwithstanding, in recent years researchers have tried to reduce fossil fuel consumption and its delete...
متن کامل